Minimal Poisson 2D#
Solves the 2D Poisson equation with Robin boundary conditions on a uniform grid where \(\Delta x=\Delta y = 1\).
\[
\nabla^2 u(x,y) = f(x,y)
\]
with \(x\in[0,5], y\in[0,5]\), and
\[\begin{split}
f(x,y) = \begin{cases}
100 & \text{ if y = 0} \\
0 & \text{ otherwise }
\end{cases}
\end{split}\]
The boundary conditions are given by
\[
au + b\nabla u = g
\]
with \(a=1\), \(b=0\), and \(g=0\).
This corresponds to the call to robinBC2D of robinBC2D(k, m, 1, n, 1, 1, 0)
.