# Jacobian > **Author:** Miguel A. Dumett > **Abstract:** This document presents mimetic differences gradient and divergence > operators in structured curvilinear geometries. It uses mimetic > interpolation operators to move quantities among the staggered grids > of the mesh. --- ## Introduction Suppose a PDE is given on a physical spatial domain $\mathcal P$ in three-dimensions (3D), with coordinates $x,y,z$. Suppose $\mathcal P$ is the result of a bijective smooth map $\mathcal X$ given by $$\begin{aligned} x & = & x(\xi,\eta,\kappa) \\ y & = & y(\xi,\eta,\kappa) \\ z & = & z(\xi,\eta,\kappa), \end{aligned}$$ and that the inverse map of $\mathcal X$ is $\Theta$ which is given by $$\begin{aligned} \xi & = & \xi(x,y,z) \\ \eta & = & \eta(x,y,z) \\ \kappa & = & \kappa(x,y,z), \end{aligned}$$ and it maps $\mathcal P$ onto a 3D logical Cartesian domain $\mathcal L$. If one defines a staggered grid on $\mathcal L$, composed of faces $F$ and centers/boundaries $C$, then $\mathcal X(C \cup F)$ is an structured grid on $\mathcal P$, with centers/boundaries $\mathcal C = \mathcal X(C)$ and faces $\mathcal F = \mathcal X(F)$. The Jacobian of the transformation $\mathcal X$ is given by $$J = \frac{\partial(x,y,z)}{\partial(\xi,\eta,\kappa)} = \left[ \begin{array}{ccc} x_\xi & x_\eta & x_\kappa \\ y_\xi & y_\eta & y_\kappa \\ z_\xi & z_\eta & z_\kappa \end{array} \right].$$ For $u:\mathcal X \to \mathbb R$, with $u = u(x,y,z) = u(x(\xi,\eta,\kappa),y(\xi,\eta,\kappa),z(\xi,\eta,\kappa))$ and hence $u = u(\xi,\theta,\kappa)$, the chain rule implies $$ \begin{aligned} u_\xi &= u_x x_\xi + u_y y_\xi + u_z z_\xi \\ u_\eta &= u_x x_\eta + u_y y_\xi + u_z z_\eta \\ u_\kappa &= u_x x_\kappa + u_y y_\xi + u_z z_\kappa \end{aligned} $$ or equivalently, $$\begin{aligned} \left[ \begin{array}{c} u_\xi \\ u_\eta \\ u_\kappa \end{array} \right] = \left[ \begin{array}{ccc} x_\xi & y_\xi & z_\xi \\ x_\eta & y_\eta & z_\eta \\ x_\kappa & y_\kappa & z_\kappa \end{array} \right] \left[ \begin{array}{c} u_x \\ u_y \\ u_z \end{array} \right] = J^T \left[ \begin{array}{c} u_x \\ u_y \\ u_z \end{array} \right] \end{aligned}$$ Hence $$\left[ \begin{array}{c} u_x \\ u_y \\ u_z \end{array} \right] = (J^T)^{-1} \left[ \begin{array}{c} u_\xi \\ u_\eta \\ u_\kappa\end{array} \right].$$ Since $$\left[ \begin{array}{ccc} a & b & c \\ d & e & f \\ g & h & i \end{array} \right]^{-1} = \frac{1}{\Delta} \left[ \begin{array}{ccc} ei - fh & ch-bi & bf - ce \\ fg - di & ai - cg & cd - af \\ dh - eg & bg - ah & ac - bd \end{array} \right],$$ where $\Delta = a(ei-fh) - b(di-fg) + c(dh-eg)$. If one denotes $$ J^T = \begin{pmatrix} (1) = x_\xi & (2) = y_\xi & (3) = z_\xi \\ (4) = x_\eta & (5) = y_\eta & (6) = z_\eta \\ (7) = x_\kappa & (8) = y_\kappa & (9) = z_\kappa \end{pmatrix} $$ then $$ (J^T)^{-1} = \frac{1}{\Delta} \begin{pmatrix} (5)(9) - (6)(8) & (3)(8) - (2)(9) & (2)(6) - (3)(5) \\ (6)(7) - (4)(9) & (1)(9) - (3)(7) & (3)(4) - (1)(6) \\ (4)(8) - (5)(7) & (2)(7) - (1)(8) & (1)(5) - (2)(4) \end{pmatrix} $$ with $\Delta = (1) ((5)(9) - (6)(8)) - (2)((4)(9) - (6)(7)) + (3)((4)(8) - (5)(7)).$ If one uses the gradient to approximate the partial derivatives of the Jacobian, then $$ J_G^T = I_{xyz}^{F \to C} {\tilde G}_{\xi \eta \kappa} $$ where ${\tilde G}_{xyz}$ is the same as $G_{xyz}$ with ${\hat I}_p$ replaced by $I_{p+2}$, the identity matrix of order $p+2$. If one computes the Jacobian at the centers then the physical gradient is given by $$ G_{xyz} = I_{xyz}^{C \to F} (J_G^T)^{-1} I_{\xi \eta \kappa}^{F \to C} G_{\xi \eta \kappa}. $$ Similarly, one can construct the Jacobian based on the divergence operator.